Segmenting Broadcast News Streams using Lexical Chains
نویسندگان
چکیده
In this paper we propose a course-grained NLP approach to text segmentation based on the analysis of lexical cohesion within text. Most work in this area has focused on the discovery of textual units that discuss subtopic structure within documents. In contrast our segmentation task requires the discovery of topical units of text i.e. distinct news stories from broadcast news programmes. Our system SeLeCT first builds a set of lexical chains, in order to model the discourse structure of the text. A boundary detector is then used to search for breaking points in this structure indicated by patterns of cohesive strength and weakness within the text. We evaluate this technique on a test set of concatenated CNN news story transcripts and compare it with an established statistical approach to segmentation called TextTiling.
منابع مشابه
Spoken and Written News Story Segmentation Using Lexical Chains
In this paper we describe a novel approach to lexical chain based segmentation of broadcast news stories. Our segmentation system SeLeCT is evaluated with respect to two other lexical cohesion based segmenters TextTiling and C99. Using the Pk and WindowDiff evaluation metrics we show that SeLeCT outperforms both systems on spoken news transcripts (CNN) while the C99 algorithm performs best on t...
متن کاملBroadcast News Gisting Using Lexical Cohesion Analysis
In this paper we describe an extractive method of creating very short summaries or gists that capture the essence of a news story using a linguistic technique called lexical chaining. The recent interest in robust gisting and title generation techniques originates from a need to improve the indexing and browsing capabilities of interactive digital multimedia systems. More specifically these sys...
متن کاملStrategies for automatic segmentation of audio data
In many applications, like indexing of broadcast news or surveillance applications, the input data consists of a continuous, unsegmented audio stream. Speech recognition technology, however, usually requires segments of relatively short length as input. For such applications, effective methods to segment continuous audio streams into homogeneous segments are required. In this paper, three diffe...
متن کاملSegmenting Documents using Multiple Lexical Features
A method is presented for segmenting documents into conceptually related areas. Determining the equivalence of text is often based on the number of word repetitions. This approach is unsuitable for detecting short segments because terms tend not to be repeated across just a few sentences. In this paper we investigate the contribution of two other lexical features to find related words: collocat...
متن کاملLexical Chains versus Keywords for Topic Tracking
This paper describes research into the use of lexical chains to build effective Topic Tracking systems and compares the performance with a simple keyword-based approach. Lexical chaining is a method of grouping lexically related terms into so called lexical chains, using simple natural language processing techniques. Topic tracking involves tracking a given news event in a stream of news storie...
متن کامل